您好,欢迎来到佐思信息
全国服务热线:
400-009-0050
佐思信息专注支持企业决策
您当前的位置:首页>>研究报告>>电子元器件

2016-2026年超级电容器技术市场研究报告
Supercapacitor Technologies and Markets 2016-2026: Electric double-layer capacitor (EDLC), ultracapacitor, lithium-ion capacitor

2016-2026年超级电容器技术市场研究报告
【报告编号】:No.25885
【发布时间】:2016-08
【关 键 字】:supercapacitor technology     超级电容技术       
【报告页数】:191页
【报告价格】:电子版:4975美元
【交付方式】:Email发送或EMS快递
【订购热线】:


400-009-0050(全国24小时服务)
北京:010-82863481
上海:021-64871266 021-64872612

报告目录下载订购协议下载在线咨询

    专业、专注于为企业提供真正有价值的全球市场调查信息,是我们的使命。我们是中国第一家汇集全球众多行业研究机构研究成果的平台,致力于为企业决策提供最有效的市场资讯,特别是为中国企业了解和进入国际市场迈出第一步,提供全面的信息参考,我们跨越语言及时间的障碍,在信息爆炸的当下,努力为客户提供最有价值的全球产业资讯。我们公司也拥有独立的研究机构,聚焦于中国市场的研究,为国内外企业在中国市场大展宏图提供市场研究支持。

• 我们在全球的合作伙伴>>• 我们的研究中心>>

  • 英文摘要
  • 中文摘要
  • 索取简版报告
  • 电子元器件行业的相关报告
DESCRIPTION
 
Supercapacitors are an emerging energy storage technology that will take a key role in the future of energy systems. This technology will supplement and, in some cases, replace the role of incumbent energy storage technologies such as lithium ion batteries, addressing the weakest points of battery technologies such as low power, limited number of cycles and low performance at low temperatures. With steady progress, supercapacitors are getting traction in mainstream application markets such as the automotive sector and opening new possibilities in emerging sectors such as grid energy storage.
 
This 190 slide report covers supercapacitor and hybrid supercapacitor technologies and their role as emerging energy storage technologies in different application segments.
 
Important market trends
Supercapacitor technologies offer a promising role in the future of sustainable energy systems from electric vehicles to renewable energy and electricity grids.
After a couple of years of stagnation the supercapacitor industry is showing renewed signs of market penetration, mostly in the automotive sector with the adoption of supercapacitor technology in the USA by General Motors.
The supercapacitor market in China for western companies remains highly uncertain and western companies look to diversify in two directions, first out of the Chinese electric bus market and secondly into emerging segments such as grid.
Chinese supercapacitor manufacturers are emerging and potentially displacing western companies domestically in the following years.
Europe will start manufacturing supercapacitors.
The grid market which includes wind turbines, grid energy storage and rail wayside offers opportunities for growth for all players.
Supercapacitors are becoming the dominant technology in wind turbine pitch control applications, the global uptake of wind renewable energy will favour the growth of supercapacitor technology.
 
Important technology trends
Aqueous electrolyte based supercapacitor technology has reached performance parity with organic electrolyte based supercapacitors.
Supercapacitor products are incrementally improving performance reaching 3 Volts and higher temperature performance as required by early adopters of the technology (i.e. automotive sector).
Lithium titanate batteries are the main competitor of supercapacitor technologies, first in automotive and recently in energy harvesting for IoT applications.
Analyst access from IDTechEx
 
All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.
 
TABLE OF CONTENTS
 
1. EXECUTIVE SUMMARY AND CONCLUSIONS
1.1.1. Focus of this report and primary trends
1.2. Technology
1.2.1. What is a supercapacitor?
1.2.2. Relative performance in energy and power of different energy storage technologies
1.2.3. Battery cycle life
1.2.4. Batteries and supercapacitors
1.2.5. Benefits of SC and Battery hybrid systems
1.2.6. Self Discharge
1.2.7. Charge and discharge behavior - batteries and supercapacitors
1.2.8. Types of capacitor
1.2.9. Principles - capacitance
1.2.10. Principles - supercapacitance
1.2.11. Principles - energy and power in supercapacitors
1.2.12. Pseudo capacitance or faradic behavior
1.3. Supercapacitor components and their role in performance
1.3.1. Supercapacitors components
1.3.2. Electrode materials - carbon, binders and additives
1.3.3. Electrode materials - carbon
1.3.4. Pore size matters for capacitance
1.3.5. Increase surface area - activation of carbon
1.3.6. Increasing performance - graphene
1.3.7. Ideal graphene has remarkable properties
1.3.8. Graphene and precursor materials
1.3.9. Surface utilisation challenge
1.3.10. Graphene Oxide (GO) reduction
1.3.11. Graphene/Graphite/CNT materials
1.3.12. Vertically Oriented Graphene Nanosheets
1.3.13. Supercapacitor performance
1.3.14. Increasing performance - graphene
1.3.15. Companies setting targets to increase performance - graphene
1.3.16. Increasing performance graphene/CNT
1.3.17. Example increasing performance - carbon nanotubes /carbon
1.3.18. Increasing performance - carbon nanotubes
1.3.19. Carbon nanotubes CNT
1.3.20. Electrolytes
1.3.21. Increasing performance the role of electrolytes
1.3.22. Organic vs aqueous electrolytes
1.3.23. Organic vs aqueous electrolytes
1.3.24. Safety - the Japanese regulation: a situation to consider
1.4. Environmentally friendlier materials in supercapacitors while keeping performance
1.4.1. Trends in electrolytes
1.4.2. Increasing performance of aqueous electrolyte SC
1.4.3. New trend in electrolytes... ionic liquids
1.4.4. The role of binders in SC
1.4.5. Natural cellulose in ionic liquids electrode manufacturing process
1.4.6. Natural cellulose in ionic liquids electrode manufacturing process
 
2. SUPERCAPACITORS MAIN COMPETITION: LITHIUM TITANATE BATTERIES
2.1.1. Battery company: Toshiba
2.1.2. Features of Toshiba's SCIB
2.1.3. Production plant for Toshiba's SCIB
2.1.4. Toshiba R&D activities
2.1.5. Graphene - LTO anode Improvement
2.2. Hybrid Supercapacitors, Supercabatteries or Asymmetric Supercapacitors
2.2.1. Nomenclature
2.2.2. Supercapacitors and hybrid supercapacitors
2.2.3. Nano hybrid capacitor (NHC)
2.2.4. Supercapacitors evolution
2.2.5. Ultrabattery
2.2.6. Hybrid SC-Supercabatteries can use aqueous or non aqueous electrolytes
2.2.7. European perspective on supply chain in supercapacitors
2.2.8. Why do SC manufacturers bother in preparing the active material?
2.2.9. Manufacturing development trends
2.2.10. Supercapacitors Cost Structure
2.2.11. Cost Structure Supercapacitors
2.2.12. Supercapacitors cost reduction is far quicker than lithium ion batteries
2.2.13. How to price energy/power devices?
2.2.14. Hybrid ESS = SC + Battery
 
3. MARKETS FOR SUPERCAPACITORS
3.1.1. Three main market segments
3.1.2. Market segmentation by farad/cell
3.1.3. Why SC in Energy Systems? Energy management in fluctuating power demand systems
3.2. Supercapacitors in electronics
3.2.1. A role for supercapacitors in smart and portable devices
3.2.2. Key enabling technologies and systems
3.2.3. Why Wireless Sensor Networks?
3.2.4. Wireless Sensor Networks and IoT
3.2.5. Critical infrastructure monitoring
3.2.6. Wireless Sensor Node
3.2.7. Why SC in Wireless Sensor Networks?
3.2.8. WSN operational profile
3.2.9. Why SC in Wireless Sensor Networks?
3.2.10. And that has an impact in power demand profiles...
3.2.11. They are getting thinner
3.2.12. Why Micro-SC in WSN and other consumer electronics? Commercial products have reduced footprint now, but not enough
3.2.13. Energy harvesting with SC
3.2.14. Microsupercapacitors
3.2.15. Manufacturing techniques are key to low cost
3.3. Supercapacitors in Transportation
3.3.1. Supercapacitors are replacing some batteries - expensive and little energy stored but...
3.3.2. Supercapacitors have a role in each stage of powertrain electrification
3.3.3. Start-stop systems - mild hybrids
3.3.4. Energy recovery - mild hybrid
3.3.5. Continental - success story
3.3.6. Power at the point of demand
3.3.7. Electronic controlled brake
3.3.8. Mazda Japan and Bollore Pininfarina France/Italy
3.3.9. Supercapacitor replaces battery across fuel cell
3.3.10. Bombardier light rail and others use supercapacitor energy harvesting
3.3.11. Rail: two ways of applying supercapacitors
3.3.12. Wayside Rail HESS: Frequency Regulation and Energy Efficiency
3.3.13. Longer life, more reliable, better response. Completely replaces battery in pure electric Sinautec bus
3.3.14. Supercapacitors assist fast charging in ABB's TOSA bus charging system in Geneva
3.3.15. Fast charge-discharge
3.3.16. Fast charge-discharge
3.3.17. Hybrid Bus - USA
3.3.18. CSR China - Hybrid Electric Bus
3.3.19. Hybrid bus - series hybrid
3.3.20. Hybrid bus - parallel hybrid
3.3.21. Modular flexible hybrid drives
3.3.22. Sports cars use supercaps
3.3.23. The result - the Toyota Yaris Hybrid-R
3.3.24. Supercapacitors applications in aerospace
3.3.25. Wireless Sensor Networks - Aviation
3.3.26. Energy harvesting and storage for structural health monitoring
3.4. Supercapacitors in industrial applications
3.4.1. Emergency backup when the electrics fail: more likely to work than a battery
3.4.2. Enercon E-48
3.4.3. SC in Lifting operations + Energy Recovery from Short Trips
3.4.4. Forklifts
3.4.5. Super Capacitor Heavy-duty Port Towing Vehicle produced by Aowei Certified by MIIT
3.4.6. Supercapacitors in port cranes
3.4.7. Supercapacitors in industrial applications
3.4.8. Building Elevators
3.4.9. Smart Metering - AMR
3.4.10. Handheld products - fast charging
3.5. Supercapacitors in grid applications
3.5.1. Grid Energy Storage
3.5.2. Uses of Energy Storage - UCAP and HESS
3.5.3. Hybrid Energy Storage Systems - performance benefits
3.5.4. The role of SC in grid
3.5.5. Duke Energy Rankin Substation: PV Intermittency Smoothing + Load Shifting
3.5.6. Smoothing Wind Farm Power Output
3.5.7. Ireland Microgrid Test Bed
 
4. STATE OF THE SUPERCAPACITOR MARKET 2015
4.1.1. Competitive Landscape
4.1.2. Pick of the news in 2015
4.1.3. Challenges for SC in Automotive
4.1.4. Response from the industry
4.1.5. Nippon Chemi-Con development plan
4.1.6. Company performance 2015 vs 2014
4.1.7. Company performance YTD 2015 vs 2014
4.1.8. The great shake out in China
4.1.9. Chinese supercapacitor market
4.1.10. European Companies developments
4.1.11. European Companies developments
4.1.12. Maxwell Technologies news June 15 2016
4.1.13. Maxwell Technologies 15 Jun 2016 shareholders meeting announcements
4.1.14. Outlook Nippon Chemicon 2016-2015
4.1.15. Application timeline
4.1.16. Existing Automotive Applications details
4.1.17. Existing non-automotive applications
4.1.18. Medium term applications
4.1.19. Supercapacitor in the automotive sector
4.1.20. OEM's point of view
4.1.21. Supercapacitors in Automotive Sector
4.1.22. SC progress in Automotive up to date
4.1.23. Focus of supercapacitor manufacturers
4.1.24. 66 manufacturers and putative manufacturers of supercapacitors/ superbatteries % by continent
4.1.25. Market Development - Number of Players
4.1.26. Supercapacitors in the future
4.1.27. Experimental supercapacitor car trunk lid

关于我们|联系我们|常见问题|服务项目|购买流程
2005-2013 All rights reserved.京ICP备05069564号-4 京公网安备110108 02010359号
全国服务热线:400-009-0050北京:010-82863481上海:021-64871266

在线客服系统